Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Annals of the Rheumatic Diseases ; 82(Suppl 1):952-953, 2023.
Article in English | ProQuest Central | ID: covidwho-20245091

ABSTRACT

BackgroundComprehensive and large-scale assessment of health-related quality of life in patients with idiopathic inflammatory myopathies (IIMs) worldwide is lacking. The second COVID-19 vaccination in autoimmune disease (COVAD-2) study [1] is an international, multicentre, self-reported e-survey assessing several aspects of COVID-19 infection and vaccination as well as validated patient-reported outcome measures (PROMs) to outline patient experience in various autoimmune diseases (AIDs), with a particular focus on IIMs.ObjectivesTo investigate physical and mental health in a global cohort of IIM patients compared to those with non-IIM autoimmune inflammatory rheumatic diseases (AIRDs), non-rheumatic AIDs (NRAIDs), and those without AIDs (controls), using Patient-Reported Outcome Measurement Information System (PROMIS) global health data obtained from the COVAD-2 survey.MethodsDemographics, AID diagnoses, comorbidities, disease activity, treatments, and PROMs were extracted from the COVAD-2 database. The primary outcomes were PROMIS Global Physical Health (GPH) and Global Mental Health (GMH) scores. Secondary outcomes included PROMIS physical function short form-10a (PROMIS PF-10a), pain visual analogue scale (VAS), and PROMIS Fatigue-4a scores. Each outcome was compared between IIMs, non-IIM AIRDs, NRAIDs, and controls. Factors affecting GPH and GMH scores in IIMs were identified using multivariable regression analysis.ResultsA total of 10,502 complete responses from 1582 IIMs, 4700 non-IIM AIRDs, 545 NRAIDs, and 3675 controls, which accrued as of May 2022, were analysed. Patients with IIMs were older [59±14 (IIMs) vs. 48±14 (non-IIM AIRDs) vs. 45±14 (NRAIDs) vs. 40±14 (controls) years, p<0.001] and more likely to be Caucasian [82.7% (IIMs) vs. 53.2% (non-IIM AIRDs) vs. 62.4% (NRAIDs) vs. 34.5% (controls), p<0.001]. Among IIMs, dermatomyositis (DM) and juvenile DM were the most common (31.4%), followed by inclusion body myositis (IBM) (24.9%). Patients with IIMs were more likely to have comorbidities [68.1% (IIMs) vs. 45.7% (non-IIM AIRDs) vs. 45.1% (NRAIDs) vs. 26.3% (controls), p<0.001] including mental disorders [33.4% (IIMs) vs. 28.2% (non-IIM AIRDs) vs. 28.4% (NRAIDs) vs. 17.9% (controls), p<0.001].GPH median scores were lower in IIMs compared to NRAIDs or controls [13 (interquartile range 10–15) IIMs vs. 13 (11–15) non-IIM AIRDs vs. 15 (13–17) NRAIDs vs. 17 (15–18) controls, p<0.001] and PROMIS PF-10a median scores were the lowest in IIMs [34 (25–43) IIMs vs. 40 (34–46) non-IIM AIRDs vs. 47 (40–50) NRAIDs vs. 49 (45–50) controls, p<0.001]. GMH median scores were lower in AIDs including IIMs compared to controls [13 (10–15) IIMs vs. 13 (10–15) non-IIM AIRDs vs. 13 (11–16) NRAIDs vs. 15 (13–17) controls, p<0.001]. Pain VAS median scores were higher in AIDs compared to controls [3 (1–5) IIMs vs. 4 (2–6) non-IIM AIRDs vs. 2 (0–4) NRAIDs vs. 0 (0–2) controls, p<0.001]. Of note, PROMIS Fatigue-4a median scores were the highest in IIMs [11 (8–14) IIMs vs. 8 (10–14) non-IIM AIRDs vs. 9 (7–13) NRAIDs vs. 7 (4–10) controls, p<0.001].Multivariable regression analysis in IIMs identified older age, male sex, IBM, comorbidities including hypertension and diabetes, active disease, glucocorticoid use, increased pain and fatigue as the independent factors for lower GPH scores, whereas coexistence of interstitial lung disease, mental disorders including anxiety disorder and depression, active disease, increased pain and fatigue were the independent factors for lower GMH scores.ConclusionBoth physical and mental health are significantly impaired in patients with IIMs compared to those with non-IIM AIDs or those without AIDs. Our results call for greater attention to patient-reported experience and comorbidities including mental disorders to provide targeted approaches and optimise global well-being in patients with IIMs.Reference[1]Fazal ZZ, Sen P, Joshi M, et al. COVAD survey 2 long-term outcomes: unmet need and protocol. Rheumatol Int. 2022;42:2151–58.AcknowledgementsThe authors a e grateful to all respondents for completing the questionnaire. The authors also thank The Myositis Association, Myositis India, Myositis UK, the Myositis Global Network, Cure JM, Cure IBM, Sjögren's India Foundation, EULAR PARE for their contribution to the dissemination of the survey. Finally, the authors wish to thank all members of the COVAD study group for their invaluable role in the data collection.Disclosure of InterestsAkira Yoshida: None declared, Yuan Li: None declared, Vahed Maroufy: None declared, Masataka Kuwana Speakers bureau: Boehringer Ingelheim, Ono Pharmaceuticals, AbbVie, Janssen, Astellas, Bayer, Asahi Kasei Pharma, Chugai, Eisai, Mitsubishi Tanabe, Nippon Shinyaku, Pfizer, Consultant of: Corbus, Mochida, Grant/research support from: Boehringer Ingelheim, Ono Pharmaceuticals, Naveen Ravichandran: None declared, Ashima Makol Consultant of: Boehringer-Ingelheim, Parikshit Sen: None declared, James B. Lilleker: None declared, Vishwesh Agarwal: None declared, Sinan Kardes: None declared, Jessica Day Grant/research support from: CSL Limited, Marcin Milchert: None declared, Mrudula Joshi: None declared, Tamer A Gheita: None declared, Babur Salim: None declared, Tsvetelina Velikova: None declared, Abraham Edgar Gracia-Ramos: None declared, Ioannis Parodis Grant/research support from: Amgen, AstraZeneca, Aurinia Pharmaceuticals, Eli Lilly, Gilead Sciences, GlaxoSmithKline, Janssen Pharmaceuticals, Novartis, and F. Hoffmann-La Roche, Elena Nikiphorou Speakers bureau: Celltrion, Pfizer, Sanofi, Gilead, Galapagos, AbbVie, Eli Lilly, Consultant of: Celltrion, Pfizer, Sanofi, Gilead, Galapagos, AbbVie, Eli Lilly, Grant/research support from: Pfizer, Eli Lilly, Ai Lyn Tan Speakers bureau: AbbVie, Gilead, Janssen, Eli Lilly, Novartis, Pfizer, UCB, Consultant of: AbbVie, Gilead, Janssen, Eli Lilly, Novartis, Pfizer, UCB, Arvind Nune: None declared, Lorenzo Cavagna: None declared, Miguel A Saavedra Consultant of: AbbVie, GlaxoSmithKline, Samuel Katsuyuki Shinjo: None declared, Nelly Ziade Speakers bureau: AbbVie, Boehringer-Ingelheim, Eli Lilly, Janssen, Pfizer, Roche, Consultant of: AbbVie, Boehringer-Ingelheim, Eli Lilly, Janssen, Pfizer, Roche, Grant/research support from: AbbVie, Boehringer-Ingelheim, Eli Lilly, Janssen, Pfizer, Roche, Johannes Knitza: None declared, Oliver Distler Speakers bureau: AbbVie, Amgen, Bayer, Boehringer Ingelheim, Janssen, Medscape, Novartis, Consultant of: 4P-Pharma, AbbVie, Acceleron, Alcimed, Altavant, Amgen, AnaMar, Arxx, AstraZeneca, Baecon, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galderma, Galapagos, Glenmark, Gossamer, iQvia, Horizon, Inventiva, Janssen, Kymera, Lupin, Medscape, Merck, Miltenyi Biotec, Mitsubishi Tanabe, Novartis, Prometheus, Redxpharma, Roivant, Sanofi, Topadur, Grant/research support from: AbbVie, Amgen, Boehringer Ingelheim, Kymera, Mitsubishi Tanabe, Novartis, Roche, Hector Chinoy Grant/research support from: Eli Lilly, UCB, Vikas Agarwal: None declared, Rohit Aggarwal Consultant of: Mallinckrodt, Octapharma, CSL Behring, Bristol Myers-Squibb, EMD Serono, Kezar, Pfizer, AstraZeneca, Alexion, Argenx, Boehringer Ingelheim (BI), Corbus, Janssen, Kyverna, Roivant, Merck, Galapagos, Actigraph, Abbvie, Scipher, Horizontal Therapeutics, Teva, Biogen, Beigene, ANI Pharmaceutical, Nuvig, Capella, CabalettaBio, Grant/research support from: Bristol Myers-Squibb, Pfizer, Mallinckrodt, Janssen, Q32, EMD Serono, Boehringer Ingelheim, Latika Gupta: None declared.

2.
Annals of the Rheumatic Diseases ; 82(Suppl 1):746-747, 2023.
Article in English | ProQuest Central | ID: covidwho-20244220

ABSTRACT

BackgroundRheumatoid arthritis (RA) and spondyloarthritis, including either Psoriatic Arthritis (PsA) and Ankylosing Spondylitis (AS), are some of the most diagnosed autoimmune rheumatic diseases (AIRDs) in rheumatologists' routine clinical practice [1]. Understanding patients' health and functional status is crucial to provide personalized management strategies to optimize disease control and enhance the quality of life.ObjectivesWe aimed to compare disease burden in patients with RA, PsA or AS by assessing Patient-Reported Outcome Measurement Information System (PROMIS) Physical Health, Global Mental Health, Physical Function and Fatigue 4a together with VAS Pain.MethodsData were obtained in the international COVID vaccination in autoimmune rheumatic diseases study second e-survey (COVAD study). Demographics, AIRD diagnosis, disease activity, PROMIS Global Physical health, PROMIS Global Mental Health, PROMIS Physical Function SF10 and PROMIS Fatigue 4a score were extracted from the COVAD study database. For this study, we only included patients with self-reported RA or spondyloarthritis (either PsA or AS) undergoing active treatment with conventional synthetic disease-modifying drugs (DMARDs) and/or biologic DMARDs, who answered all the survey questions. Active disease was defined as the patient's perception of their disease as active in the four weeks before their first COVID-19 vaccine shot. Analysis of Variance with Bartlett's and Tukey's test was used to compare continuous variables between groups.ResultsFrom January to June 2022, n.1907 patients with RA, female 87.62% (1671/1907), with mean age (±SD) 50.95 ±13.67, n.311 patients with PsA, female 67.20% (209/311), with a mean age of 50.42 ±12.70, and n.336 patients with AS, male 51.31% (209/311), with a mean age of 43.13 ±12.75 years, responded to the COVAD e-survey.In those with active disease, neither physical health, global mental health, physical function, fatigue, nor pain were different among groups (Table 1, Figure 1). Patients with inactive AS had higher mean global physical health scores than RA patients (13.13 ±2.93 VS RA 12.48 ±2.90, p=0.01, Table 1). Those with inactive RA or PsA showed more severe fatigue (PsA 10.58 ±2.22, RA 10.45 ±4.08 VS 9.4 ±4.13, p =0.01 for both). Patients with inactive RA also reported poorer physical function and more residual pain than those with AS (37.79 ±8.86 VS 41.13 ±7.79, p<0.001;3.87 ±2.45 VS 3.34 ±2.39, p=0.01, respectively). Similarly, residual pain was perceived as higher in patients with inactive PsA than those with AS (4.04 ±2.50 VS 3.34 ±2.39, p=0.01)ConclusionDisease burden is roughly comparable in patients with active RA, PsA or AS. Patients with inactive RA and PsA suffer higher disease burden than those with inactive AS.Reference[1]Mease PJ, Liu M, Rebello S, Kang H, Yi E, Park Y, Greenberg JD. Comparative Disease Burden in Patients with Rheumatoid Arthritis, Psoriatic Arthritis, or Axial Spondyloarthritis: Data from Two Corrona Registries. Rheumatol Ther. 2019 Dec;6(4):529-542.Table 1.Patient-Reported Outcome Measures between groups.Inactive diseaseAS (n.185)PsA (n.179)RA (n.1167)MeanSDMeanSDMeanSDPROMIS Global Physical Health13.13*2.9512.433.2712.482.90p=0.01, VS RAPROMIS Global Mental Health13.313.3612.973.3312.843.17PROMIS Fatigue 4a9.44.1310.58*4.2210.45*4.08p=0.01, bothPROMIS Physical Function SF10 Score41.137.3939.279.0137.79*8.86p<0.001, VS ASVAS Pain3.342.394.04*2.503.87*2.45p=0.01, bothActive DiseaseAS (n.35)PsA (n.38)RA (n.189)MeanSDMeanSDMeanSDPROMIS Global Physical Health11.053.1910.102.7611.243.41PROMIS Global Mental Health11.313.2610.843.6311.893.30PROMIS Fatigue 4a12.944.8712.844.4211.754.68PROMIS Physical Function SF10 Score35.829.6233.528.7634.909.80VAS Pain4.682.775.02.544.682.61Figure 1.Violin plots showing kernel densities, quartiles and median for Patient-Reported Outcome Measures for patients with RA, PsA and AS, stratified by disease activity status.[Figure omitted. See PDF]Acknowledgements:NIL.Disclosure of InterestsVincenzo Venerito: None declared, Marc Fornaro: None declared, Florenzo Iannone: None declared, Lorenzo Cavagna: None declared, Masataka Kuwana: None declared, Vishwesh Agarwal: None declared, Naveen Ravichandran: None declared, Jessica Day Grant/research support from: JD has received research funding from CSL Limited., Mrudula Joshi: None declared, Sreoshy Saha: None declared, Syahrul Sazliyana Shaharir: None declared, Wanruchada Katchamart: None declared, Phonpen Akarawatcharangura Goo: None declared, Lisa Traboco: None declared, Yi-Ming Chen: None declared, Parikshit Sen: None declared, James B. Lilleker Speakers bureau: JBL has received speaker honoraria/participated in advisory boards for Sanofi Genzyme, Roche, and Biogen. None is related to this manuscript., Consultant of: JBL has received speaker honoraria/participated in advisory boards for Sanofi Genzyme, Roche, and Biogen. None is related to this manuscript., Arvind Nune: None declared, John Pauling: None declared, Chris Wincup: None declared, Ai Lyn Tan Speakers bureau: ALT has received honoraria for advisory boards and speaking for Abbvie, Gilead, Janssen, Lilly, Novartis, Pfizer, and UCB., Nelly Ziade Speakers bureau: NZ has received speaker fees, advisory board fees, and research grants from Pfizer, Roche, Abbvie, Eli Lilly, NewBridge, Sanofi-Aventis, Boehringer Ingelheim, Janssen, and Pierre Fabre;none are related to this manuscript, Grant/research support from: NZ has received speaker fees, advisory board fees, and research grants from Pfizer, Roche, Abbvie, Eli Lilly, NewBridge, Sanofi-Aventis, Boehringer Ingelheim, Janssen, and Pierre Fabre;none are related to this manuscript, Marcin Milchert: None declared, Abraham Edgar Gracia-Ramos: None declared, Carlo Vinicio Caballero: None declared, COVAD Study: None declared, Vikas Agarwal: None declared, Rohit Aggarwal Speakers bureau: RA has a consultancy relationship with and/or has received research funding from the following companies: Bristol Myers-Squibb, Pfizer, Genentech, Octapharma, CSL Behring, Mallinckrodt, AstraZeneca, Corbus, Kezar, Abbvie, Janssen, Alexion, Argenx, Q32, EMD-Serono, Boehringer Ingelheim, and Roivant., Grant/research support from: RA has a consultancy relationship with and/or has received research funding from the following companies: Bristol Myers-Squibb, Pfizer, Genentech, Octapharma, CSL Behring, Mallinckrodt, AstraZeneca, Corbus, Kezar, Abbvie, Janssen, Alexion, Argenx, Q32, EMD-Serono, Boehringer Ingelheim, and Roivant., Latika Gupta: None declared.

3.
Annals of the Rheumatic Diseases ; 82(Suppl 1):540-541, 2023.
Article in English | ProQuest Central | ID: covidwho-20235126

ABSTRACT

BackgroundAlthough many studies have been conducted on COVID-19 in recent years, there are still unanswered questions regarding breakthrough infections (BTIs), particularly in patients with systemic lupus erythematosus (SLE).ObjectivesThis study aimed to determine the occurrence of breakthrough COVID-19 infections in patients with SLE versus other autoimmune rheumatic diseases (AIRDs), non-rheumatic autoimmune diseases (nrAIDs), and healthy controls (HCs).MethodsThe study was based on data from the COVAD questionnaire which amassed a total of 10,783 complete responses from patients with SLE, AIRD, or nrAIRD, and HCs. After exclusion of individuals who were unvaccinated, those who received one vaccine dose only, and those with uncertain responses regarding the vaccine doses, a total of 9,595 patients formed the study population of the present investigation. If a COVID-19 infection occurred after the initial two vaccine doses and at least one booster dose (at least three doses in total, herein termed full vaccination), it was considered a BTI. Data were analysed using multivariable regression models. Statistically significant results were denoted by p values <0.05.ResultsA total of 7,016/9,595 (73.1%) individuals were fully vaccinated. Among those, 1,002 (14.2%) reported at least one BTI, and 166 (2.3%) reported at least two BTIs. Among SLE patients, 867/1,218 (71.2%) were fully vaccinated. Among fully vaccinated SLE patients, 137 (15.8%) reported at least one BTI while 28 (3.2%) reported at least two BTIs. BTI frequencies in fully vaccinated SLE patients were comparable to those of other AIRDs (OR: 1.0;95% CI: 0.8–1.3;p=0.447) and nrAIDS (OR: 0.9;95% CI: 0.6–1.3;p=0.856) but higher compared with HCs (OR: 1.2;95% CI: 1.0–1.6;p=0.022).For SLE patients with three vaccine doses, 113/137 (82.5%) reported at least one BTI while the corresponding number for four vaccine doses was 24/137 (17.5%). Compared with HCs (OR: 10.6;95% CI: 1.2–93.0;p=0.032) and other AIRDs (OR: 3.5;95% CI: 1.08–11.5;p=0.036), SLE patients showed higher frequencies of hospitalisation.AID multimorbidity was associated with a 15-fold increased risk for a need of advanced treatment for COVID-19 (OR: 15.3;95% CI: 2.6–88.2;p=0.002).ConclusionCOVID-19 BTIs occurred in nearly 1 every 6th fully vaccinated patient with SLE, and 20% more frequently in this patient population compared with fully vaccinated HCs. Moreover, BTIs in SLE patients were more severe compared with BTIs in HCs or patients with AIRDs other than SLE, resulting in a greater need for hospitalisation. AID multimorbidity contributed to a more severe COVID-19 BTI requiring advanced management. These insights call for greater attention to vaccination in the vulnerable group of SLE patients, with appropriate risk stratification towards optimised vaccination strategies.Figure 1.Survival analysis across patients with SLE, AIRDs, or nrAIDs, and HCs. SLE: systemic lupus erythematosus;AIRD: autoimmune rheumatic disease;nrAID: non-rheumatic autoimmune disease;HC: healthy control.[Figure omitted. See PDF]AcknowledgementsThe authors thank all survey respondents, as well as patient associations and all members of the COVAD study group for their invaluable role in the data collection.Disclosure of InterestsEmelie Kihlgren Olsson: None declared, Naveen Ravichandran: None declared, Elena Nikiphorou Speakers bureau: EN has received speaker honoraria/participated in advisory boards for Celltrion, Pfizer, Sanofi, Gilead, Galapagos, AbbVie, and Lilly., Consultant of: EN has received speaker honoraria/participated in advisory boards for Celltrion, Pfizer, Sanofi, Gilead, Galapagos, AbbVie, and Lilly., Grant/research support from: EN holds research grants from Pfizer and Lilly., Julius Lindblom: None declared, Sreoshy Saha: None declared, Syahrul Sazliyana Shaharir: None declared, Wanruchada Katchamart: None declared, Phonpen Akarawatcharangura Goo: None declared, Lisa Traboco: None declared, Yi-Ming Chen: None declared, Kshitij Jagtap: None declared, James B. Lilleker Speakers bureau:

4.
Rheumatology (United Kingdom) ; 62(Supplement 2):ii51-ii52, 2023.
Article in English | EMBASE | ID: covidwho-2324199

ABSTRACT

Background/Aims Cases of new autoimmune and autoinflammatory conditions have been reported among COVID-19 survivors. A literature review on newonset autoimmune connective tissue diseases (ACTDs) following infection with COVID-19 is lacking.This systematic literature review aimed to evaluate the potential association between COVID-19 infection and the development of new-onset ACTDs in adults. Methods Articles published until September 2022, investigating the association between COVID-19 infection and new-onset ACTDs were included. The ''population'' searched was patients with disease terms for autoimmune connective tissue diseases, including (but not limited to) systemic lupus erythematosus (SLE), Sjogren's syndrome, systemic sclerosis (SSc), any idiopathic inflammatory myositis (IIM), antisynthetase syndrome, mixed CTD and undifferentiated CTD (and related MeSH terms), with ''intervention'' as COVID-19 and related terms. For terms for COVID-19, a dedicated search strategy developed by the National Institute for Clinical Excellence was used.Medline, Embase, and Cochrane databases were searched, restricted to English-language articles only. Eligible articles were: case reports and series (of any sample size), observational studies, qualitative studies and randomised controlled trials. Patients developing ACTDs without prior COVID-19 or reporting flares of existing ACTDs were excluded. Information was extracted on patient demographics, new ACTDs' onset time, clinical characteristics, COVID-19 and ACTD treatment, and COVID-19 and ACTDs outcomes. The protocol was registered in PROSPERO (CRD42022358750). Results After deduplication, 2239 articles were identified. After screening title and , 2196 papers were excluded, with 43 proceeding to fulltext screening. Ultimately, 28 articles (all single case reports) were included. Of the 28 included patients, 64.3% were female. The mean age was 51.1 years (range 20-89 years). The USA reported the most cases (9/28). ACTD diagnoses comprised: 11 (39.3%) IIM (including 4 cases of dermatomyositis);7 (25%) SLE;4 (14.3%) anti-synthetase syndrome;4 (14.3%) SSc;2 (7.1%) other ACTD (one diagnosed with lupus/MCTD overlap). Of eight, four (14.3%) patients (including that with lupus/MCTD) were diagnosed with lupus nephritis. The average onset time from COVID-19 infection to ACTD diagnosis was 23.7days. A third of the patients were admitted to critical care, one for ACTD treatment for SLE with haemophagocytic lymphohistiocytosis (14 sessions of plasmapheresis, rituximab and intravenous corticosteroids) and nine due to COVID-19. The majority (80%) of patients went into remission of ACTD following treatment, while two (10%) patients died- one due to macrophage activation syndrome associated with anti-synthetase syndrome and two from unreported causes. Conclusion Our results suggest a potential association between COVID-19 infection and new-onset ACTDs, predominantly in young females, reflective of wider CTD epidemiology. The aetiology and mechanisms by which ACTDs arise following COVID-19 infection remain unknown and require more robust epidemiological data.

5.
Rheumatology (United Kingdom) ; 62(Supplement 2):ii53, 2023.
Article in English | EMBASE | ID: covidwho-2323430

ABSTRACT

Background/Aims Post COVID-19 syndrome (PCS) is an emerging cause of morbidity and poor quality of life in COVID-19 survivors. We aimed to assess the prevalence, risk factors, outcomes, and association with disease flares of PCS in patients with autoimmune rheumatic diseases (AIRDs) and non-rheumatic autoimmune diseases (nrAIDs), both vulnerable groups understudied in the current literature using data from the 2nd COVID-19 Vaccination in Autoimmune Diseases (COVAD) global multicentre patient self-reported e-survey. Methods The survey was circulated from February to July 2022 by the international COVAD Study Group (157 collaborators from 106 countries), and demographics, comorbidities, AIRD/nrAID status, COVID-19 history, vaccination details, and PROMIS physical and mental function were recorded. PCS was defined as symptom resolution time >90 days following acute COVID-19. Predictors of PCS were analysed using regression models for the different groups. Results 7666 total respondents completed the survey. Of these, 2650 respondents with complete responses had positive COVID-19 infection, and 1677 (45.0% AIRDs, 12.5% nrAIDs, 42.5% HCs) completed the survey >90 days post acute COVID-19. Of these, 136 (8.1%) had PCS. Prevalence of PCS was higher in AIRDs (10.8%) than healthy controls HCs (5.3%) (OR: 2.1;95%CI: 1.4-3.1, p=0.002). Across the entire cohort, a higher risk of PCS was seen in women (OR: 2.9;95%CI: 1.1-7.7, p=0.037), patients with long duration of AIRDs/ nrAIDs (OR 1.01;95%CI: 1.0-1.02, p=0.016), those with comorbidities (OR: 2.8;95%CI: 1.4-5.7, p=0.005), and patients requiring oxygen supplementation for severe acute COVID-19 (OR: 3.8;95%CI: 1.1- 13.6, p=0.039). Among patients with AIRDs, comorbidities (OR 2.0;95%CI: 1.08-3.6, p=0.026), and advanced treatment (OR: 1.9;95%CI: 1.08-3.3, p=0.024), or intensive care (OR: 3.8;95%CI: 1.01-14.4, p=0.047) for severe COVID-19 were risk factors for PCS. Notably, patients who developed PCS had poorer PROMIS global physical [15 (12-17) vs 12 (9-15)] and mental health [14 (11-16) vs 11 (8-14)] scores than those without PCS. Conclusion Individuals with AIRDs have a greater risk of PCS than HCs. Associated comorbid conditions, and advanced treatment or intensive care unit admission for severe COVID-19 confer a higher risk of PCS. It is imperative to identify risk factors for PCS for immediate multidisciplinary management in anticipation of poor physical and mental health.

6.
Rheumatology (United Kingdom) ; 62(Supplement 2):ii16, 2023.
Article in English | EMBASE | ID: covidwho-2323429

ABSTRACT

Background/Aims Flares following COVID-19 vaccination are an emerging concern among patients with rare rheumatic disease like idiopathic inflammatory myositis (IIMs), whereas data and understanding of this is rather limited. We aimed to study the prevalence, characteristics and determinants of IIM flares following COVID-19 vaccination. Methods CoVAD (COVID-19 Vaccination In Autoimmune Diseases) surveys are global patient self-reported e-surveys from 109 countries conducted in 2021 and 2022. Flares of IIM were defined by 4 definitions;a. patient self-reported, b. physician and immunosuppression (IS) denoted, c. sign directed (new erythematous rash, or worsening myositis or arthritis), d. MCID worsening of PROMISPF10a score between the patients who had taken both surveys. Descriptive statistics and multivariate regression were used to describe the predictors of flare. Cox-regression analysis was used to differentiate flares by IIM subtypes. Results Among the 1,278 IIM patients, aged 63 (50-71) years, 276 (21.5%) were dermatomyositis, 237 (18.5%) IBM, 899 (70.3%) were female and most were Caucasian (80.8%). Flares of IIM were seen in 123/1278 (9.6%), 163/1278 (12.7%), 112/1278 (8.7%), and 16/96 (19.6%) by definitions a-d respectively with median time to flare being 71.5 (10.7- 235) days. Muscle weakness (69.1%), and fatigue (56.9%) were the most common symptoms of flare. The predictors of self-reported flare were: inactive/disease in remission prior to first dose of vaccine (OR=4.3, 95%CI=2.4-7.6), and anxiety disorder (OR=2.2, 95%CI=1.1-4.7). Rituximab use (OR=0.3, 95%CI=0.1-0.7) and IBM (OR=0.3, 95%CI=0.1-0.7) were protective. Physician defined flares were seen more often in females, mixed ethnicity, and those with asthma, ILD, and anxiety disorder (OR ranging 1.6-7.0, all p<0.05). Notably, overlap myositis (OM) had higher HR for flare compared to polymyositis (HR=2.3, 95%CI=1.2-4.4, p=0.010). Conclusion Nearly one in ten individuals with IIM develop flares after vaccination, more so among women, those with overlap myositis, and inactive disease prior to vaccination. Formal definition of flares in IIM is needed.

7.
Rheumatology (United Kingdom) ; 62(Supplement 2):ii152-ii153, 2023.
Article in English | EMBASE | ID: covidwho-2325277

ABSTRACT

Background/Aims There are sporadic reports about the development of new rheumatic immune-mediated inflammatory diseases (R-IMIDs) in adults after receiving SARS-CoV-2 vaccines. This systematic review (SR) aimed to critically review and summarize the clinical profile, patient demographics, treatment, and prognosis of new-onset R-IMIDs following SARS-CoV-2 vaccination. Methods We retrieved English-language articles (Case reports and series and observational studies) on new-onset R-IMIDs following SARS-CoV-2 vaccination, published until June 2022, from standard databases (MEDLINE, Embase, Cochrane). The search strings used during the literature search incorporated 'SARS-CoV-2 vaccination' (along with related MeSH terms) and various key terms for R-IMIDs [which included (but was not limited to) inflammatory arthritis, connective tissue disease (CTD), vasculitis, systemic lupus erythematosus, Sjogren's syndrome, sarcoidosis, systemic sclerosis, idiopathic inflammatory myositis, anti-synthetase syndrome, Adult-onset Stills disease (AOSD), giant cell arteritis (GCA), and polymyalgia rheumatica (PMR)]. The protocol was registered in PROSPERO (CRD42022318561). Results Of the total 2179 articles retrieved, 1986 articles were excluded following the title- screening, and 107 articles that did not meet inclusion criteria. We included the remaining 86 articles (130 cases) upon full-text screening. Furthermore, we added four articles (six cases) based on a manual search, comprising 90 articles (136 cases) for final analysis. These 136 new R-IMID cases were reported from 27 different countries. Of these, more than one-third of the cases were reported from three countries (viz., Italy, Japan, and the USA). The patients had a mean age of 57 (range:17-90) years, and the majority were females (63.0%). Most patients developed R-IMIDs after receiving Pfizer-BioNTech vaccine (76;55%), followed by Oxford AstraZeneca vaccine (35;25%). The mean duration between SARSCoV- 2 vaccination and R-IMIDs development was 9.2 (range:1-90) days. The second dose of the vaccine resulted in more R-IMIDs (74;54%) than the first (53;39%). CTDs (34;25%) and small vessel vasculitis (33;24%) were the commonest R-IMID manifestations, followed by inflammatory arthritis and AOSD, each in 13 (9.5%) cases. Nearly half of the patients with CTDs had Idiopathic Inflammatory Myositis. PMR and GCA accounted for 16 (11.7%) and 5 (3.6%) cases, respectively. However, no cases of axial spondylarthritis were reported. Most (118;86%) R-IMID patients were treated with corticosteroids, with a small number receiving steroid-sparing drugs, such as methotrexate, rituximab and cyclophosphamide. Most (125;91%) went into either disease remission or improvement following the treatment. Only three patients were admitted to the intensive care unit (ICU) to manage their disease;One of them died due to fatal myositis and rhabdomyolysis;two surviving ICU patients had ANCA-associated vasculitis with lung involvement. Conclusion Although rare, this SR highlights the emergence of de novo R-IMIDs following SARS-CoV-2 vaccination. We cannot confirm the causality between the vaccination and the onset of R-IMID. However, further research is warranted in this area.

8.
International Journal of Rheumatic Diseases ; 26(Supplement 1):376-377, 2023.
Article in English | EMBASE | ID: covidwho-2237341

ABSTRACT

Background/Purpose: Idiopathic inflammatory myopathies (IIMs) are a group of rare systemic autoimmune rheumatic diseases (AIRDs) with considerable heterogeneity. Little is reported about gender difference in patient-reported outcomes (PROs) of those with IIMs, which have a significant impact on health-related quality of life. We aimed to investigate the gender difference in PROs and treatment regimens of IIM patients utilizing data obtained in the COVID-19 vaccination in autoimmune disease (COVAD) study, a large-scale, international self-reported e-survey assessing the safety of COVID-19 vaccination in patients with various AIRDs including IIMs. Method(s): The COVAD study was launched in April 2021 and continued until December 31, 2021. The survey data regarding demographics, AIRD diagnosis, autoimmune multimorbidity (defined as three or more AIRD diagnoses for each patient), disease activity, current corticosteroid or immunosuppressant use, and PROs including fatigue and pain VAS, PROMIS Short Form -Physical Function 10a (PROMIS PF-10a), general health status, and ability to carry out routine activities were extracted from the COVAD database. Each PRO, disease activity, and treatments were compared between women and men. Patients with inclusion body myositis (IBM) were analyzed separately due to significant difference in treatment regimens and outcomes compared to other IIM subtypes. Factors affecting each PRO were determined by multivariable analysis. Result(s): 1197 complete responses from IIM patients as of August 2021 were analyzed. 845 (70.6%) patients were women. Women were younger (58 [48-68] vs. 69 [58-75] years old, median [interquartile range (IQR)], P0.001), and more likely to suffer from autoimmune multimorbidity compared to men (11.1% vs. 3.1%, P 0.001;Table 1). In patients with non-IBM IIMs, disease activity and corticosteroid use were comparable in both genders, while the distribution of immunosuppressant use was different (P = 0.002), with more hydroxychloroquine use in women (18.3% vs. 6.9%). The median fatigue VAS was significantly higher in women than in men (5 [IQR 3-7] vs. 4 [IQR 2-6], P = 0.004), whereas gender difference in the other PROs was not statistically significant (Table 2). In patients with IBM, on the other hand, no significant gender differences in PROs and treatment regimens were observed. The multivariable analysis in non-IBM IIMs revealed women, living in high-income countries, overlap myositis, and autoimmune multimorbidity as independent factors for higher fatigue VAS. Conclusion(s): Women with IIMs frequently suffer from autoimmune multimorbidity, and also experience more fatigue compared to men, calling for greater attention and further research on targeted treatment approaches. (Table Presented).

9.
International Journal of Rheumatic Diseases ; 26(Supplement 1):63-64, 2023.
Article in English | EMBASE | ID: covidwho-2236372

ABSTRACT

Background: COVID-19 vaccines are safe & effective, though patients with rheumatic diseases like idiopathic inflammatory myositis (IIMs), and those with multiple comorbidities continue to be hesitant. Adverse events after vaccination are not extensively studied in those with multiple coexisting autoimmune diseases. Patients with IIM often have multiple autoimmune rheumatic and autoimmune non-rheumatic comorbidities (IIM-AIDs), with potentially increased risk of AEs. The COVAD study aimed to assess COVID-19 vaccination-related AEs till 7 days post-vaccination in IIM-AIDs compared to IIMs and healthy controls (HCs) group. Method(s): T he C OVAD s tudy g roup c omprised > 110 c ollaborators across 94 countries. The study was conducted from March-December 2021. A survey monkey platform-based self-reported online survey captured data related to COVID-19 vaccination-related AEs in IIMs, AIDs, and HCs. We compared COVID-19 vaccination-related AEs among IIM-AID patients and IIM alone and HCs, adjusting for age, gender, ethnicity, vaccine type, immunosuppression, and numbers of AIDs, using binary logistic regression. Statistically significant results following multivariate regression are reported. Result(s): Among 6099 participants, 1387 (22.7%) IIM, 4712 (77.2%) HC, 66.3% females, were included from 18 882 respondents: 573 (41.0%) people with IIM-AIDs;814 (59.0%) with IIM without other AIDs;and 4712 HCs. People with IIM were older [median 54 (45-66) IIM-AIDs, 64 (50-73) IIM, 34 (26-47) HC years, P < 0.001]. BNT162b2 (Pfizer) (37.5%) and ChAdOx1nCoV-19 (Oxford) (11.1%) were the most common vaccines. When compared to IIM alone, IIM-AID patients reported higher overall AEs [OR 1.5 (1.1-2.1)], minor AE [OR 1.5 (1.1-2.1)] &major AE [OR 3 (1.5-5.8)]. IIM-AIDs patients also reported higher body ache, nausea, headache, & fatigue (OR ranging 1.3-2.3). After adjusting for the number of AIDs, the major AEs equalized but overall AEs, & minor AEs, such as fatigue remained higher. When compared to HCs, IIM-AIDs patients reported similar overall AEs, minor AEs but higher major AEs [OR 2 (1.2-3.3)] nausea/ vomiting [OR 1.4 (1.01-2)], headache [OR 1.2 (1.01-1.6)], and fatigue [OR 1.3 (1.03-1.6)]. Dermatomyositis with AIDs (n = 183) reported higher major AEs [OR 4.3 (1.5-12)] compared to DM alone (n = 293). Active IIM with AIDs (n = 482) reported higher overall AEs [OR 1.5 (1.1-2.2)], minor AEs [OR 1.5 (1.1-2.2)] and major AEs [OR 2.6 (1.2-5.2)] compared to active IIM alone (n = 643). Conclusion(s): COVID-19 vaccination is safe with minimal to no risks of short-term AEs in patients with IIM without other concomitant autoimmune diseases. The presence of autoimmune multimorbidity conferred higher self-reported short-term risks of overall, major, and minor COVID-19 vaccination-related AEs 7 days post-vaccination, particularly in those with active IIM.

10.
International Journal of Rheumatic Diseases ; 26(Supplement 1):51-53, 2023.
Article in English | EMBASE | ID: covidwho-2235178

ABSTRACT

Background: Patients with comorbidities and active rheumatic disease have increased morbidity and hospitalization following SARS-CoV- 2 infection. While vaccination has decreased this, many unknown factors still influence COVID-19 vaccine hesitancy. The data on predictors of vaccine hesitancy is regional and scarce. We aimed to analyze the factors influencing vaccine hesitancy in 2022 and compare them with those in 2021 through multicentre international e-surveys (The COVID-19 Vaccination in Autoimmune Diseases Studies -COVAD study 1 and 2). Method(s): COVAD 1 and 2 are multi-centre international e-survey with 152 collaborators in 106 countries including patients with idiopathic inflammatory myopathies (IIM), autoimmune rheumatic diseases (AIRDs), other autoimmune diseases (AIDs), and healthy controls (HCs) conducted in March-December 2021 and February-June 2022 (ongoing), respectively. Descriptive and multivariable regression adjusting for age, gender, ethnicity, and stratified by country of residence was performed. Result(s): Among the 18 882 (2021) and 7666 complete responses (2022), and 3109 (16.5%) and 387 (5.1%) did not receive any COVID-19 vaccine, respectively. The prevalence of vaccine hesitancy has decreased [OR 0.26 (0.24-0.3), P < 0.001]. Among the 387 vaccine non-recipients in 2022, numbers were as follows: IIM 69 (17%), AIRDs 179 (46%), other AIDs 80 (20.6%), and HC 59 (15%). The reasons for vaccine hesitancy in 2022 included: doctor advising against it 47 (12%), do not believe in the science behind the vaccine 79 (21%), long-term safety concerns 152 (39%), awaiting more safety data 105 (27%), and not recommended due to recent infection 30 (7%). Compared to AIRDs and HCs, IIM patients were more disbelievers of the science behind the vaccine [OR 1.8 (1.08-3.2), P = 0.023 AIRDs, OR 4 (1.9-8.1), P < 0.001 HC], had more long-term safety concerns [OR 1.9 (1.2-2.9), P = 0.001 AIRDs, OR 5.4 (3-9.6), P < 0.001 HC] and had more doctors recommending against the vaccine [OR 12.9 (2.8-59), P < 0.001 HC]. Vaccine non-recipients had higher pain visual analog score (VAS) (P < 0.001), lower fatigue VAS (P = 0.003), lower PROMIS10a physical health (P < 0.001), and mental health scores (P = 0.015). The factors predicting vaccine hesitancy in regression were lower PROMIS10a global physical health score [OR 0.9 (0.8-0.97), P = 0.014] and Caucasian ethnicity [OR 4.2 (1.7-10.3), P = 0.001]. Compared to 2021, doctor's advising against vaccination [OR 2.5 (1.8-3.6), P < 0.001] and long-term safety concerns [OR 3.6 (2.9-4.6), P < 0.001] were more frequent causes of vaccine hesitancy overall whereas vaccine non-availability [OR 0.05 (0.02-0.11), P < 0.001] and have scheduled the vaccination but not received [OR 0.1 (0.06-0.3), P < 0.001] were less frequent causes in 2022. Conclusion(s): Overall, the prevalence of COVID-19 vaccine hesitancy has decreased. Long-term safety concerns and the need for more safety data are now the major reasons for vaccine hesitancy. Caucasian ethnicity and lower physical health scores are predictors of vaccine hesitancy. The increase in physicians recommending against vaccination calls for more physician awareness to mitigate vaccine hesitancy.

12.
Annals of the Rheumatic Diseases ; 81:966-967, 2022.
Article in English | EMBASE | ID: covidwho-2009100

ABSTRACT

Background: COVID-19 vaccines have been proven to be safe and effective in the healthy population at large. However, signifcant gaps remain in the evidence of their safety in patients with systemic autoimmune and infammatory disorders (SAIDs). Patients and rheumatologists have expressed concerns regarding vaccination triggered allergic reactions, thrombogenic events, and other adverse events (ADEs) contributing to vaccine hesitancy (1) Objectives: This study aimed to assess and compare short term COVID-19 vaccination associated ADEs in patients with SAIDs and healthy controls (HC) seven days post-vaccination, as well as between patients with SAIDs receiving different vaccines. Methods: We developed an comprehensive, patient self-reporting electronic-survey to collect respondent demographics, SAID details, COVID-19 infection history, COVID-19 vaccination details, 7-day post vaccination adverse events and patient reported outcome measures using the PROMIS tool. After pilot testing, validation, translation into 18 languages on the online platform surveymonkey.com, and vetting by international experts, the survey was circulated in early 2021 by a multicenter study group of >110 collaborators in 94 countries. ADEs were categorized as injection site pain, minor ADEs, major ADEs, and hospitalizations. We analyzed data from the baseline survey for descriptive and intergroup comparative statistics based on data distribution and variable type (data as median, IQR). Results: 10900 respondents [42 (30-55) years, 74% females and 45% Caucasians] were analyzed. 5,867 patients (54%) with SAIDs were compared with 5033 HCs. All respondents included in the fnal analysis had received a single dose of the vaccine and 69% had received 2 primary doses. Pfzer (39.8%) was the most common vaccine received, followed by Oxford/AstraZeneca (13.4%), and Covishield (10.9%). Baseline demographics differed by an older SAID population (mean age 42 vs. 33 years) and a greater female predominance (M:F= 1:4.7 vs. 1:1.8) compared to HCs. 79% had minor and only 3% had major vaccine ADEs requiring urgent medical attention overall. In adjusted analysis, among minor ADEs, abdominal pain [mul-tivariate OR 1. 6 (1.14-2.3)], dizziness [multivariate OR 1. 3 (1.2-1.5)], and headache [multivariate OR 1.67 (1.3-2.2)], were more frequent in SAIDs than HCs. Overall major ADEs [multivariate OR 1. 9 (1.6-2.2)], and throat closure [multivar-iate OR 5.7 (2.9-11.3)] were more frequent in SAIDs though absolute risk was small (0-4%) and rates of hospitalization were similarly small in both groups, with a small absolute risk (0-4%). Specific minor ADEs frequencies were different among different vaccine types, however, major ADEs and hospitalizations overall were rare (0-4%) and comparable across vaccine types in patients with SAIDs (Figure 1). Conclusion: Vaccination against COVID-19 is relatively safe and tolerable in patients with SAIDs. Certain minor vaccine ADEs are more frequent in SAIDs than HCs in this study, though are not severe and do not require urgent medical attention. SAIDs were at a higher risk of major ADEs than HCs, though absolute risk was small, and did not lead to increased hospitalizations. There are small differences in minor ADEs between vaccine types in patients with SAIDs.

13.
Annals of the Rheumatic Diseases ; 81:748, 2022.
Article in English | EMBASE | ID: covidwho-2009053

ABSTRACT

Background: Idiopathic inflammatory myopathies (IIM) are a rare, multisystem, heterogeneous diseases, and contribute to high psychological burden. The patients' perception of physical health, deteriorating independence and social and environmental relationships may not always be a direct function of disease activity. To face with these aspects, several worldwide specialized organization have recommended the use of patient reported outcome measures (PROMs) both in clinical trials and observational studies to highlight patient's perception of the disease (1). Unfortunately, data on fatigue scores in IIM is limited. Objectives: We compared fatigue VAS scores in patients with IIM, autoimmune diseases (AIDs) and healthy controls (HCs) and triangulated them with PROMIS physical function in a large international cohort made up of answers from the e-survey regarding the COVID-19 Vaccination in Autoimmune Diseases (COVAD) study. Methods: Data of 16327 respondents was extracted from the COVAD database on August 31th 2021. VAS fatigue scores were compared between AID, HC and IIM using univariate followed by multivariate analysis after adjusting for baseline differences. We further performed a propensity score matched analysis on 1827 subjects after adjusting for age, gender and ethnicity. The Kruskal-Wallis test was used for continuous variables and chi-square test for categorical variables, and Bonferroni's correction was applied for the post hoc analyses considering IIMs as a reference group. Results: We analyzed answers from 6988 patients, with a mean age of 43.8 years (SD 16.2). The overall percentage of female was 72% and the population ethnicity was mainly composed of White (55.1%), followed by Asian (24.6%), and Hispanic (13.8%). The overall fatigue VAS was 3.6 mm (SD 2.7). IIMs VAS was 4.8 mm (SD 2.6), AIDs 4.5 mm (SD 2.6), and HC 2.8 mm (SD 2.6) (P <0,001). VAS fatigue scores of IIMs were comparable with AIDs (P 0.084), albeit signifcantly higher than the HCs (P <0,001). Notably, fatigue VAS was lower in IIMs than AIDs in two distinct subsets: inactive disease as defned by the patient's perception and the 'excellent' general health condition group, where IIMs had worse scores (P <0,05). Interestingly, fatigue VAS was comparable in active disease defned by physician assessment, patient perception, based on general functional status, or when defned by steroid dose being prescribed. Notably, after propensity matched analysis of patients adjusting for gender, age and ethnicity (1.827 answers, I.e. 609 subjects per group, P =1) the differences disappeared and IIMs and AIDs had comparable fatigue levels across all levels of disease activity, although the fatigue discrepancies with HCs were substantially confrmed. After application of a multivariate linear regression analysis we found that lower fatigue VAS scores were related to HC (P <0,001), male gender (P <0,001), Asian and Hispanic ethnicities (P <0,001 and 0,003). Conclusion: Our study confrms that there is a higher prevalence of fatigue in all the AIDs patients, with comparable VAS scores between IIMs and other AIDs. We can also read our data commenting that females and/or Caucasians patients suffer a higher impact of this manifestation of chronic autoimmune diseases upon their lives. This is why these subjects, to our judgement, should be carefully evaluated during outpatients visits and to whom we should spend some extra time to discuss health related issues and how to improve them.

14.
Annals of the Rheumatic Diseases ; 81:334-336, 2022.
Article in English | EMBASE | ID: covidwho-2008938

ABSTRACT

Background: Signifcant gaps are present in the evidence of the spectrum and severity of COVID-19 infection in idiopathic infammatory myopathies (IIM). IIM patients typically require immunosuppressive therapy, may have multiple disease sequelae, and frequent comorbidities, and thus may be more susceptible to severe COVID-19 infection and complications (1). The possibility of attenuated immunogenicity and reduced efficacy of COVID-19 vaccines due to concomitant immunosuppressive medication is a major concern in these patients, and there is little data available on COVID-19 vaccine breakthrough infections (BI) in IIM (2). Objectives: This study aimed to compare disease spectrum and severity and COVID-19 BI in patients with IIM, other systemic autoimmune and infammatory diseases (SAIDs) and healthy controls (HCs). Methods: We developed an extensive self-reporting electronic-survey (COVAD survey) featuring 36 questions to collect respondent demographics, SAID details, COVID-19 infection history, COVID-19 vaccination details, 7-day post vaccination adverse events and patient reported outcome measures using the PROMIS tool. After pilot testing, validation, translation into 18 languages on the online platform surveymonkey.com, and vetting by international experts, the COVAD survey was circulated in early 2021 by a multicenter study group of >110 collaborators in 94 countries. BI was defned as COVID-19 infection occurring more than 2 weeks after receiving 1st or 2nd dose of a COVID-19 vaccine. We analyzed data from the baseline survey for descriptive and intergroup comparative statistics based on data distribution and variable type. Results: 10900 respondents [mean age 42 (30-55) years, 74% females and 45% Caucasians] were analyzed. 1,227 (11.2%) had IIM, 4,640 (42.6%) had other SAIDs, and 5,033 (46.2%) were HC. All respondents included in the fnal analysis had received a single dose of the vaccine and 69% had received 2 primary doses. Pfzer (39.8%) was the most common vaccine received, followed by Oxford/AstraZeneca (13.4%), and Covishield (10.9%). IIM patients were older, had a higher Caucasian representation and higher Pfzer uptake than other SAIDs, and HC. A higher proportion of IIM patients received immu-nosuppressants than other SAIDs. IIMs were at a lower risk of symptomatic pre-vaccination COVID-19 infection compared to SAIDs [multivariate OR 0.6 (0.4-0.8)] and HCs [multivariate OR 0.39 (0.28-0.54)], yet at a higher risk of hospitalization due to COVID-19 compared to SAIDs [univariate OR 2.3 (1.2-3.5)] and HCs [multivariate OR 2.5 (1.1-5.8)]. BIs were very uncommon in IIM patients, with only 17 (1.4%) reporting BI. IIM patients were at a higher risk of contracting COVID-19 prior to vaccination than ≤2 weeks of vaccination [univariate OR 8 (4.1-15)] or BI [univariate OR 4.6 (2.7-8.0)]. BIs were equally severe compared to when they occurred prior to vaccination in IIMs, and were comparable between IIM, SAIDs, and HC (Figure 1), though BI disease duration was shorter in IIMs than SAIDs (7 vs 11 days, p 0.027). 13/17 IIM patients with BI were on immunosuppressants. Conclusion: IIM patients experienced COVID-19 infection less frequently prior to vaccination but were at a higher risk of hospitalization and requirement for oxygen therapy compared with patients with HC. Breakthrough COVID-19 infections were rare (1.4%) in vaccinated IIM patients, and were similar to HC and SAIDs, except for shorter disease duration in IIM.

15.
Annals of the Rheumatic Diseases ; 81:720-722, 2022.
Article in English | EMBASE | ID: covidwho-2008862

ABSTRACT

Background: Evaluation of physical function is fundamental in the management of idiopathic infammatory myopathies (IIMs). Patient-Reported Outcome Measurement Information System (PROMIS) is a National Institute of Health initiative established in 2004 to develop patient-reported outcome measures (PROMs) with improved validity and efficacy. PROMIS Physical Function (PF) short forms have been validated for use in IIMs [1]. Objectives: To investigate the physical function status of IIM patients compared to those with non-IIM autoimmune diseases (AIDs) and healthy controls (HCs) utilizing PROMIS PF data obtained in the coronavirus disease-2019 (COVID-19) Vaccination in Autoimmune Diseases (COVAD) study, a large-scale, international self-reported e-survey assessing the safety of COVID-19 vaccines in AID patients [2]. Methods: The survey data regarding demographics, IIM and AID diagnosis, disease activity, and PROMIS PF short form-10a scores were extracted from the COVAD study database. The disease activity (active vs inactive) of each patient was assessed in 3 different ways: (1) physician's assessment (active if there was an increased immunosuppression), (2) patient's assessment (active vs inactive as per patient), and (3) current steroid use. These 3 defnitions of disease activity were applied independently to each patient. PROMIS PF-10a scores were compared between each disease category (IIMs vs non-IIM AIDs vs HCs), stratifed by disease activity based on the 3 defnitions stated above, employing negative binominal regression model. Multivariable regression analysis adjusted for age, gender, and ethnicity was performed clustering countries, and the predicted PROMIS PF-10a score was calculated based on the regression result. Factors affecting PROMIS PF-10a scores other than disease activity were identifed by another multivariable regression analysis in the patients with inactive disease (IIMs or non-IIM AIDs). Results: 1057 IIM patients, 3635 non-IIM AID patients, and 3981 HCs responded to the COVAD survey until August 2021. The median age of the respondents was 43 [IQR 30-56] years old, and 74.8% were female. Among IIM patients, dermatomyositis was the most prevalent diagnosis (34.8%), followed by inclusion body myositis (IBM) (23.6%), polymyositis (PM) (16.2%), anti-syn-thetase syndrome (11.8%), overlap myositis (7.9%), and immune-mediated necrotizing myopathy (IMNM) (4.6%). The predicted mean of PROMIS PF-10a scores was signifcantly lower in IIMs compared to non-IIM AIDs or HCs (36.3 [95% (CI) 35.5-37.1] vs 41.3 [95% CI 40.2-42.5] vs 46.2 [95% CI 45.8-46.6], P < 0.001), irrespective of disease activity or the defnitions of disease activity used (physician's assessment, patient's assessment, or steroid use) (Figure 1). The largest difference between active IIMs and non-IIM AIDs was observed when the disease activity was defned by patient's assessment (35.0 [95% CI 34.1-35.9] vs 40.1 [95% CI 38.7-41.5]). Considering the subgroups of IIMs, the scores were signifcantly lower in IBM in comparison with non-IBM IIMs (P < 0.001). The independent factors associated with low PROMIS PF-10a scores in the patients with inactive disease were older age, female gender, and the disease category being IBM, PM, or IMNM. Conclusion: Physical function is signifcantly impaired in IIMs compared to non-IIM AIDs or HCs, even in patients with inactive disease. The elderly, women, and IBM groups are the worst affected, suggesting that developing targeted strategies to minimize functional disability in certain groups may improve patient reported physical function and disease outcomes.

16.
Clin Rheumatol ; 41(11): 3595, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1999968
17.
Indian Journal of Rheumatology ; 17(2):210-212, 2022.
Article in English | EMBASE | ID: covidwho-1928763
19.
Indian Journal of Rheumatology ; 17(2):214-215, 2022.
Article in English | EMBASE | ID: covidwho-1928757
20.
Clin Rheumatol ; 41(6): 1935-1936, 2022 06.
Article in English | MEDLINE | ID: covidwho-1777737
SELECTION OF CITATIONS
SEARCH DETAIL